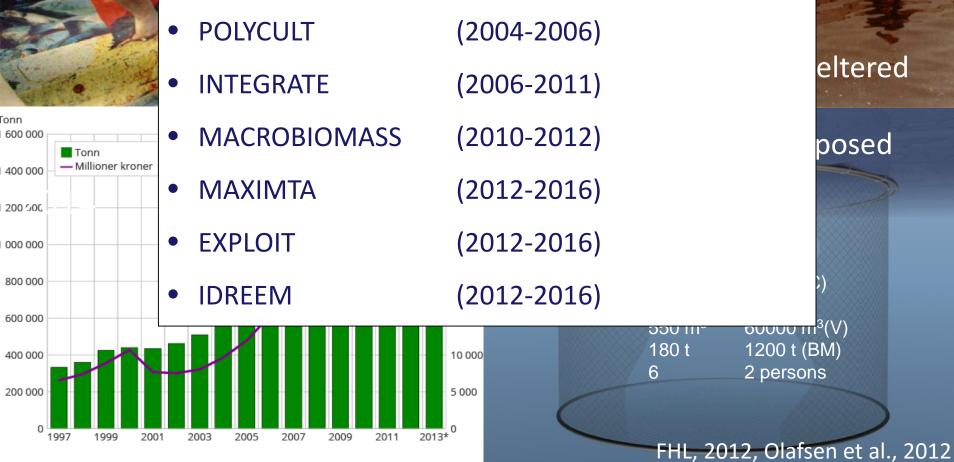
What is the way forward for IMTA development in Norwegian aquaculture?

10 years of salmon-driven IMTA research

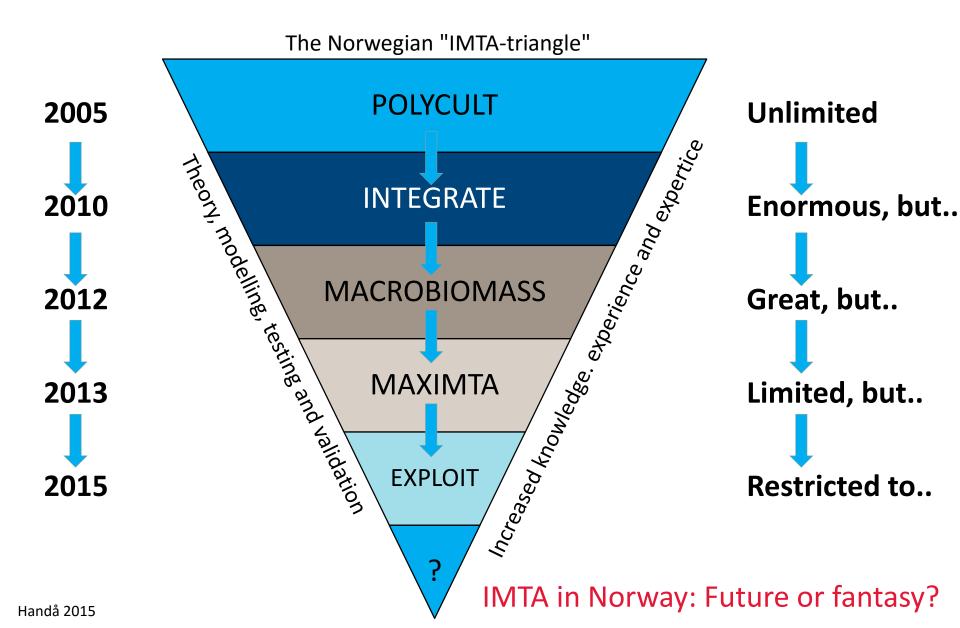
Henrice Jansen, Aleksander Handå, Vivian Husa, OleJ Broch, PiaK Hansen, Øivind Strand

SINTEF

UNIVERSIDAD DE LOS LAGOS


NTNU – Trondheim

Norwegian University of Science and Technology


10 years of salmon-driven IMTA research in Norway

rospected growth 2050

ilde: Statistisk controlburg

Potential for IMTA

What is the way forward for IMTA in Norway?

Outline:

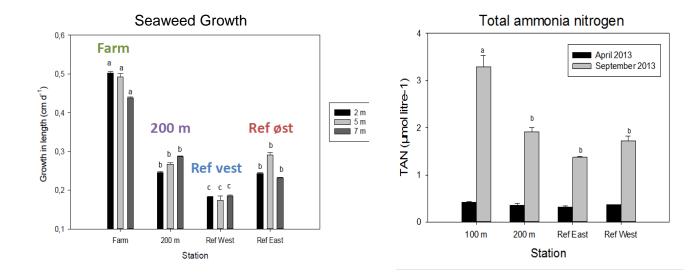
1. Synthesis of results, challenges and opportunities

Seaweed Case, Bivalve Case, Benthic Case

2. Stakeholder workshop Environment and aquaculture governance – EAG project

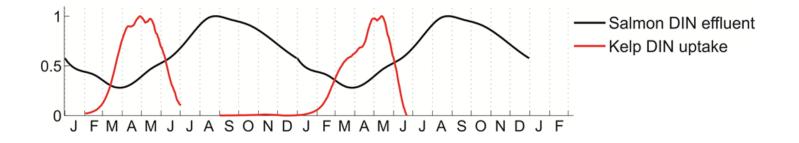
"Possible application of IMTA and advance on the development of alternative and/or adapted approaches in Norwegian aquaculture"

- National stakeholders: Science, Industry, Government
- International experts: China (YSFRI), Canada (DFO), UK (SAMS)

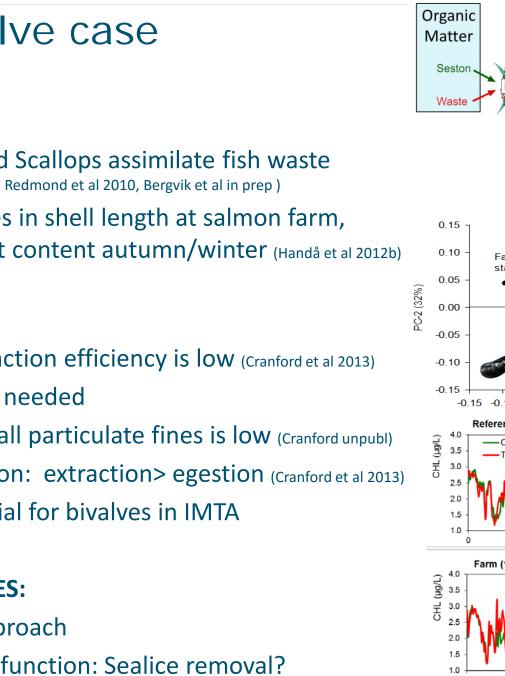

The Seaweed case

RESULTS

- Up to 1.5x to 3x better growth at salmon farm (Handå et al 2013, Fosberg et al in prep)
- SI suggest fish waste uptake (Fosberg et al in prep)
- Positive growth only close to farm (Fosberg et al in prep)
- Nutrient dispersion patterns indicate quick dilution (Jansen et al in prep)



The Seaweed case


CHALLENGES

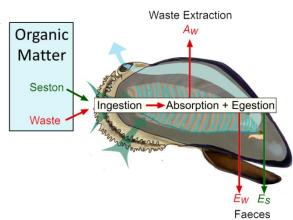
- Unbalanced production (ratio 1:10 fish to seaweed) (Reid et al 2013, Broch et al 2013)
- Large areas required for bioremediation
- Growth enhancement not relevant at commercial scale
- Seasonal mismatch (Broch et al 2013, in prep)

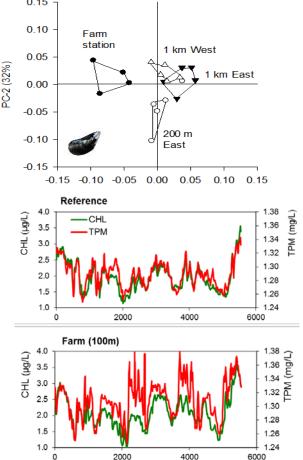
OPPORTUNITIES:

- Balance approach regional scale
- > Developing seaweed sector in Norway (although still immature)
- Market potential

The bivalve case

RESULTS

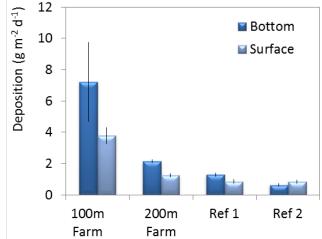

- Mussels and Scallops assimilate fish waste \succ (Handå et al 2012a, Redmond et al 2010, Bergvik et al in prep)
- No increases in shell length at salmon farm, higher meat content autumn/winter (Handå et al 2012b)


CHALLENGES:

- Waste extraction efficiency is low (Cranford et al 2013)
- Large areas needed
- Loading small particulate fines is low (Cranford unpubl)
- Biodeposition: extraction> egestion (Cranford et al 2013) \succ
- \succ Low potential for bivalves in IMTA

OPPORTUNITIES:

- **Balance** approach
- Alternative function: Sealice removal?



The benthic case

RESULTS

- No culture trials performed yet
- Most particulate waste settle quickly
- Footprint of farm 50-500m (Kutti et al 2007a)
- Biomass and diversity enhanced under fish cages (Kutti et al 2007b)

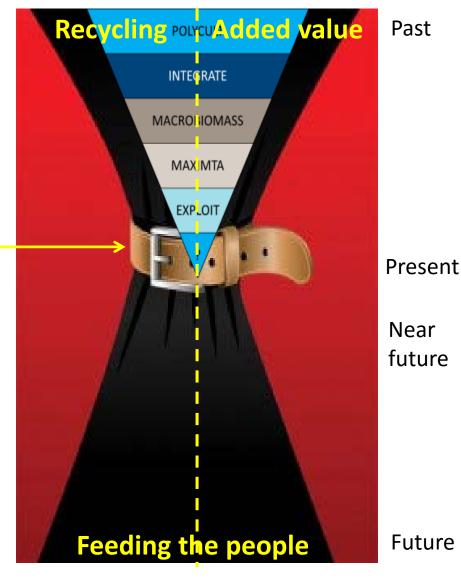
The benthic case

OPPORTUNITIES:

- Concentrated waste source > farm scale
- Industry interest: Need for feed ingredients
- International experience indicates high potential
- Candidates: Polychaetes, Sea urchins, cucumbers,...
- Scaling seems right (Robinson & Reid 2014)
- Alternative function : Reefs nature conservation

CHALLENGES

- Technical feasibility (depth fjords)
- Complex production systems
- Containment options vs sea ranging
- Extraction efficiency is largely unknown

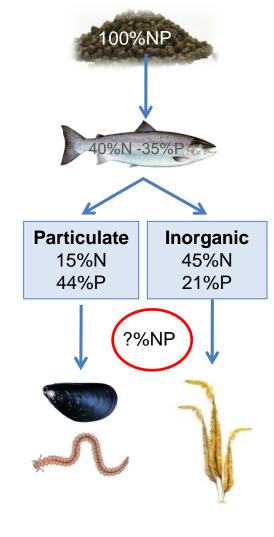

[©] S. Robinson

What is the way forward for IMTA in Norway?

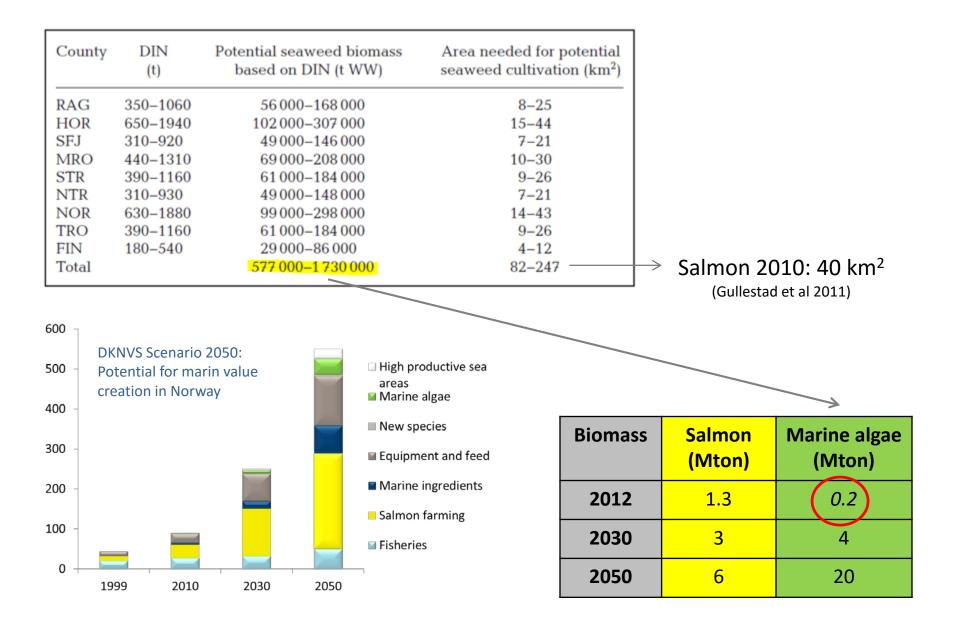
Workshop:

What is needed to loosen the belt?

- Rethinking and defining IMTA, specific for Norwegian conditions
- > SWOT
- Actions required


Rethinking and defining IMTA

How does IMTA assist sustainable development


- How 'green' are integrated cultures? Define % removal required
- Arrows need numbers
- (un)balanced production

County	DIN (t)	Potential seaweed biomass based on DIN (t WW)	Area needed for potential seaweed cultivation (km²)
RAG	350-1060	56000-168000	8-25
HOR	650-1940	102000-307000	15-44
SFJ	310-920	49000-146000	7-21
MRO	440-1310	69000-208000	10-30
STR	390-1160	61000-184000	9-26
NTR	310-930	49000-148000	7-21
NOR	630-1880	99000-298000	14-43
TRO	390-1160	61 000-184 000	9-26
FIN	180-540	29000-86000	4-12
Total		577 000-1 730 000	82-247

Amount seaweed required for 100% removal (Wang et al 2012)

Rethinking and defining IMTA

Rethinking and defining IMTA

Scaling – Where are wastes recycled?

- Inorganic: Regional scale (Coastal Zone Management plans)
- > Organic: Farm scale (Site management)
- Fjord versus Coastal zone production areas
- IMTA > IA > MTA

Value chain

- Growth salmon, matched with increase extractive species
- Low trophic production is currently limited in Norway
- Market development

SWOT Analysis

Strengths

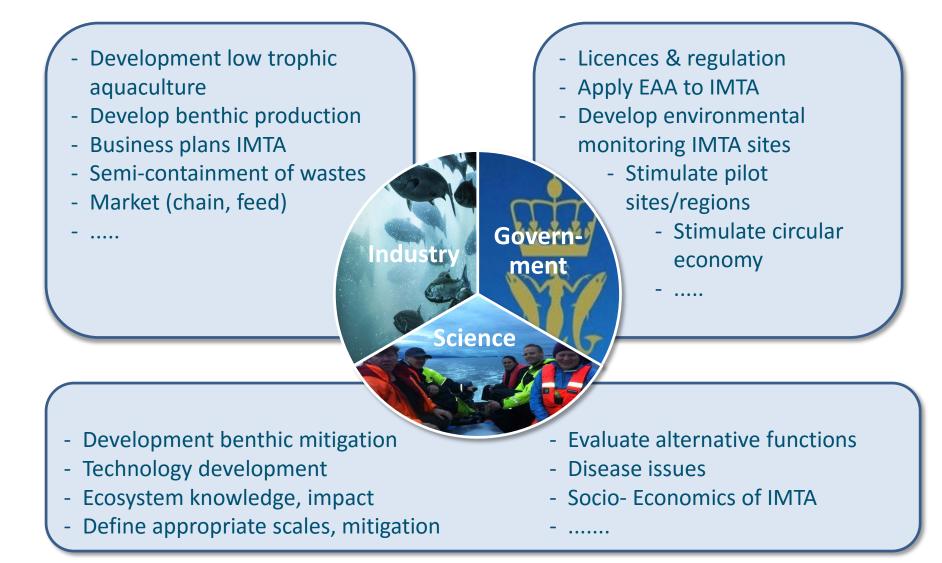
- Strong & professional industry
- Strong marine engineering
- Leading role scientists
- Support Government and society
- International linkages

Opportunities

- Acceptance of science
- Cosmopolitan tastes (restaurants)
- What other options for nutrient extraction do we have?
- International collaboration

(Demonstration sites, transfer tech)

Weaknesses


- Lack of model / Trial & error
- Lack of clarity
- Commitment by government
- Lack of spokesperson
- Lack of education

Threats

- Lack of diversification
- Imposed regulation
- Supply chain
- Sustainable food production: if we wait until we need to, we might be too late

SWOT IMTA development Norway - By S Robinson (2015)

Further actions required (to loosen the belt)

Transparent stakeholder exchange of concerns and solutions

Thank you.

REFERENCES

Bergvik et al. Assimilation of nutrients from salmon aquaculture in great scallops (*Pecten Maximus*) and blue mussels (*Mytilus edulis*) in a field experiment (in prep)

Broch et al 2013

- Cranford et al 2013. Open water integrated multi-trophic aquaculture: constraints on the effectiveness of mussels as an organic extractive component. Aqua. Env. Inter.
- Fossberg J. et al. Growth and composition of the kelp Saccharina latissima cultivated in salmon-driven IMTA (in prep)
- Gullestad et al. 2011. Effektiv og bærekraftig arealbruk i havbruksnæringen areal til begjær Rapport fra et ekspertutvalg oppnevnt av fiskeri og kystdepartementet. Oslo 4. februar 2011: Fiskeri og kystdepartementet.
- Handå A. et al. 2012. Incorporation of salmon fish feed and faeces components in mussels (*Mytilus edulis*): implications for integrated multi-trophic aquaculture in cool-temperate North Atlantic waters. Aquaculture, 370-371, 40 53]
- Handa A. et al. 2012. Incorporation of fish feed and growth of blue mussels in close proximity to salmon aquaculture: Implications for integrated multi-trophic aquaculture in Norwegian coastal waters. Aquaculture, 356-357, 328 341
- Handå A. et al. 2013. Seasonal- and depth-dependent growth of cultivated kelp (*Saccharina latissima*) in close proximity to salmon (*Salmo salar*) aquaculture in Norway. Aquaculture 414-415:191-201
- Jansen et al. (in prep) Pelagic waste dispersal around salmon cultures: a spatio-temporal study focusing on the euphotic zone of dynamic coastal systems in Norway
- Jansen et al (in prep) Limitations and strategies of discrete water quality sampling at open-water aquaculture sites.
- Kutti et al., 2007a. Effects of organic effluents from a salmon farm on a fjord system. II Temporal and spatial patterns in infauna community composition. Aquaculture 262:355-366
- Kutti et al., 2007b. Effects of organic effluents from a salmon farm on a fjord system. I Vertical export and dispersal processes. Aquaculture 262:367-381
- Redmond KJ, Magnesen T, Kupka Hansen P, Strand Ø, Meier S. 2010. Stable isotopes and fatty acids as tracers of the assimilation of salmon fish feed in blue mussels (*Mytilus edulis*) Aquaculture 298:202-210.

Reid et al 2013. Weight ratios of the kelps, *Alaria esculenta* and *Saccharina latissima*, required to sequester dissolved inorganic nutrients and supply oxygen for Atlantic salmon, *Salmo salar*, in Integrated Multi-Trophic Aquaculture systems. Aquaculture 408/409:34-46.
Robinson and Reid 2014. DFO Can. Sci Advis Second Res Doc 2014-026 60p Review of the potential near and far field effects of the organic extractive component of IMTA

Wang X. et al. 2012. Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture. Aquaculture and Environment Interactions, 2:267-283